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This paper deals with the application of solutions of a three-dimensional 

contact problem of a strip to the analysis of an infinite beam resting on 

an elastic foundation. Instead of the commonly used Hertz theory, this 

paper assumes that between the deflection SV(X, y, 0) and the load p(x, y) 

the following relationship holds 

+kp@, Y) 

where vO and Eg are elastic constants of the material; (S) is a part of 

a half-space on which the load p(x, y) is acting, k is some constant 

depending on the structure of the surface of the lastic support, 

This generalization of the Hertz theory was proposed by Shtaerman 11 1. 
It represents a combination of the Hertz theory and the “bedding coeffi- 

cient” hypothesis, and it includes them as particular cases. 

The above problem is solved by assuming that the base of the beam be- 

fore deformation is plane and the bending takes place in the longitudinal 

direction only. 

1, The differential equation of the bending of the beam has the 

following form: 

EZP (Y) = 9 (Y) - r (Yl (1.1) 

where E is the modulus of elasticity of the beam, I the moment of inertia 

of the beam cross-section, w(y) the deflection of the axis of the beam, 

q(y) the load. r(y) the reaction of the support per unit length. 

If the beam has contact with the elastic support along the strip (53, 

IxI< a,-m<y<w, then equation (1) takes the following form: 
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f--v*a - 
w (x, y, 0) = --& f de f - p 6 @ dq 

_. y (x- 41” -I- (Y- Q2 
+ kp k Y) 

0 
--a 

(f.2) 

Note that W(L, y, 0) = o(y) in the region (59, moreover 

a 

r(Y)= 5 P(% Y)dS (1.3) 
---a 

Let us consider first the case when q(y) = a(h) cos xy, where x > 0 

is an arbitrary parameter and O(X) is an arbitrary function of h. In this 

case the system of equations (1.11 and (1.2) can be satisfied by putting 

W (Y) = b ()i) cos XY, r (y) = c (hf cos hY 

where b(h) and c(x) are some functions of A. 

(1.4) 

It is easy to verify that equation (1.1) is satisfied if 

f?lh”b (1) = a (A) - c (a) (1.5) 

Taking into account that W(X, y, 0) = b(X) cos hy for 1 % 1 < a, equation 

(1.2) is satisfied if we put 

p (2, Y) = ‘p 0, 2) cos hY (1.6) 

where &h, X) is a solution of the following equation 

b 0) = 
2(1 -vvn2) = 

& 5 P (J., t) Ko tX I x - 41 dt + fq (1, 4 
0 --a 

U-7) 

In the last formula go(t) is a well-known Bessel function. After find- 

ing @A, x) and noticing that 

a 

s 
9 (X, z) dx = c (a) V.8) 

--a 

we obtain a,condition which must be fulfilled by the constants b(X) and 

c(x) for (1.4) to be satisfied. 

2. Since the function KO( t) satisfies 

Y*t + t-y - y = 0 

it is possible to prove that the function 

a (a, x, z) = ! (1n;;2) i ‘p (a, t) k’o [X 1/(z - f)* + z”] dt 

satisfies equation 
--a 

(2.1) 

(2.2) 



986 Y.L. Ruachcu 

at all points of the xx-plane except for the points of a segment [-a, al 

of the x-axis. and tends to zero at infinity. 

Since the function Kg(t) has only one singularity (logarithmic) at 

t = 0, it is possible to obtain the following formulas, analogous to the 

well-known formulas in potential theory: 

aa 0, 5, + 0) 2 (1 - vo2) = 
az xfio ‘p (h, 4 

x a@(& 2, - 0) 2 (1 - vo2) (I I < 4 (2.3) 
= _ 

a2 x& ‘p (1, 2) 

a@09 2, 0) 
az = 

0 (I x I > a) (2.4) 

It follows from formulas (2.3) and (1.7) that for the points of the 

segment [ x 1 < o of the x-axis the following is true: 

UI (a, x, 0) + kl ‘@ ‘;zx7 ‘) = b (1) ( kl =. xE,k 
2(1 - vo2) > 

(2.5) 

Thus, the problem is reduced to finding a solution of the equation 

(2.2) which satisfies boundary conditions (2.5) and becomes zero at in- 

finity. 

In the author’s paper [2 I a solution was found for the case when 

kl = 0. Therefore, let (D,(x, x, Z) be a solution which corresponds to 

this particular case. For 1 x 1 < a, we then have 

where 

(2.7) 

@)a (a, x,0) = b (A), a@,, oh 2, + 0) = 2 b(l) 7 

a2 
&.6,, cos 2” cos-i $ 

xVa2 -Z+ v_o 
(2.6) 

OD 
8,” = (- 1)” 2 

Ap)AE)F’)Fek& (0, - ‘/ra2h2) . 

i=o 
Feksi (0, - l/d AL) 

The numbers Atzi) are Fourier coefficients 

-Q/4 02h2:‘: and Fek .(x - 

of the Mathieu functions 

q) are well known Mathieu functions 

To calculate 6, i we cii uie Tables 14 1. Next, by applying Green’s 

formula we get 

ss (v u u - u v v) dx dy = s /v ?u--u .av ds 
\ a72 a; > 

CD) IL1 

where (D) represents the interior of a circle with an arbitrary radius R 

and without the points of the segment [-II, (11 of the x-axis. Putting 

V = @‘(A, x, Z) and II = @u((h. x, ~1, and taking into consideration the 

fact that these functions satisfy (2.2), as R + 00, we get 
n a 

1 ” (D(h,x,O) - m.(h;:, + ‘) dx - ’ s CD,,@, x, 0) ?!!_&;Z&. dz = 0 (2.8) 

and becaiie of (2.5) we get 
--a 
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a a a 

b @! s (o;, dx -- ICI s OiOizdx - b (a) s 0;dSdl 
--a -a --Q 

It follows from (2.9) that n 

where 

a a 

!i -i- & (2.11) 

--a -Cl 

(2.12) 

It is easy to verify that @ * -+ const as kl -+ =, and consequently 

6 3 0 BS k + DO. Moex-wef, c -+ 0” as it -t 0. Since wz, -t const for h -I 00 * 
then c + 0 for A + t=. Thus, for sufficiently large and sufficiently small 
values af kI we can neglect c in (2.11). It should be mentioned, however, 
that by dropping c in this formula we commit certain errors in evaluating 
the magnitude of 6. 

An exact solution of the problem for all values of k is connected with 
a solution of the above boundary value problem, and it may be an object 
for further investigations. 

From 13.8). (2.3) and (2.111 we get 

and it follows from here that 

(2.14) 

(2.15) 

Some values of the function A(t) are shown in the Table below: 
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TABLE 1. 

I R 11 

0 0 

:) I 0.624 

‘). 2 0.977 

!I.:< I .x35 

0.4 1.436 

f 

0.5 1.600 1.0 

0.6 1.733 1.2 

0.7 1.546 1.4 

0.8 1.944 1.6 

0.9 2.027 1.8 

R(L) I / t R(f) 

2.1(30 2.0 2.514 

2.213 4.0 2.793 

2.316 6.0 2. !m 

2.395 ta x 

2.459 

Eliminating c(x) from (1.5) and (2.15) we get 

b (h) = (l --vvn2)iR (aa) +- )k,J 

xE,ah + Ef (1 - Y,,Z) 1 K (a h) + hk, ] h@ a 0) (2.16) 

3. It follows from (2.17) that to the load q(y) = a(x) cos hy there 

corresponds the following deflection 

f/i (Y) = 
(1 -v,.~) If? (ai,) + hk,] a (a) 

%fi,ah + /+,f (1 - vet) 1 R (oh) +- ?Jc,] 2.” 
CT?S ATJ (3.1) 

Representing an arbitrary load in the form of a Fourier integral we 

can find the deflection of a beam from the following formula 
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